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Decomposition of the point-dipole field into homogeneous and evanescent parts
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In near-field optics the resolution and sensitivity of measurements depend on the abundance of evanescent
waves in relation to propagating waves. The electromagnetic field propagator is related to the scalar spherical
wave, for which the Weyl expansion is a half-space representation containing both evanescent and homoge-
neous plane waves. Making use of these results, we decompose the dyadic free-space Green function into its
evanescent and homogeneous parts and show that some approaches put forward in the literature are inconsis-
tent with this formulation. We express the results in a form that is suitable for numerical computation and
illustrate the field decomposition for a point dipole in some typical cases.@S1063-651X~99!05001-1#

PACS number~s!: 41.20.Jb, 07.79.Fc
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I. INTRODUCTION

In the past few years near-field optical microsco
~SNOM or NSOM! has become an important practical tool
acquire information about the optical properties of matter
the nanometer scale@1,2#. The near-field technique allow
the classical diffraction limit to be surpassed typically by
order of magnitude. It is generally accepted that in near-fi
optics the high spatial resolution is obtained through de
tion of the evanescent~or nonradiating! electromagnetic field
which concentrates near the sample surface. However,
question of how the nanoscale information is stored in
evanescent field is rather complicated@3#. In any case the
sensitivity of a near-field measurement strongly depends
the ratio of this evanescent field to the homogeneous~or
propagating! component that is always present.

A careful analysis of the signal detected in near-field m
surement requires a fully electromagnetic treatment of
optical fields involved. Useful insight into the problem ca
be gained by considering a point dipole and by decompos
the associated free-space dyadic Green function into
propagating and nonpropagating constituents. An analog
decomposition has previously been discussed for the cas
the scalar spherical wave@4,5#. In Ref. @5# an expression in
terms of Bessel and Lommel functions was found for
evanescent field contribution. Recently, a closed-form f
mula for the evanescent dyadic Green function was s
gested and extensively used in SNOM simulations@6#.

In this paper we decompose the scalar and dyadic f
space Green functions into their homogeneous and eva
cent parts on the basis of proper half-space field represe
tions. The results are expressed in a compact form tha
suitable for efficient numerical computations. We comm
on the nature of the decompositions and illustrate the po
source and point-dipole field components in some charac
istic situations. Our expressions for the evanescent-wave
homogeneous-wave dyadic Green functions differ in gen
from those in Refs.@6#; they agree only in one given direc
tion and we conclude that the method employed in th
works is incorrect.
PRE 591063-651X/99/59~1!/1200~7!/$15.00
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II. DIPOLE FIELD

We consider a point dipoleP located in the origin, gen-
erating a monochromatic field which at an arbitrary obser
tion point r can be written~in SI units! as

E~r !5
m0v2

4p
GJ ~r !•P. ~2.1!

Herem0 is the permeability of the vacuum,v is the angular
frequency of the light, andGJ (r ) is the dyadic free-space
Green function. This function contains all the informatio
about the field components created by the source dip
pointing in an arbitrary direction. The dyadic Green functi
is expressible as@7#

GJ ~r !5S UJ1
1

k2 ““ DG~r !, ~2.2!

whereUJ is the unit dyadic,k5v/c52p/l is the wave num-
ber of the field, andc is the speed of light in vacuum. Th
function G(r )5exp(ikr)/r is the outgoing scalar free-spac
Green function which satisfies the inhomogeneous He
holtz equation with ad-function source term in the origin
On performing the derivations, Eq.~2.2! may also be written
in the form

GJ ~r !5F S 1

r
1

i

kr22
1

k2r 3DUJ

1S 2
1

r
2

3i

kr2 1
3

k2r 3D r0r0Gexp~ ikr !, ~2.3!

wherer0 is a unit vector in ther direction.
The objective of this paper is to decompose the total fi

given by Eq.~2.1!, and accordingly the dyadic Green fun
1200 ©1999 The American Physical Society
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FIG. 1. Logarithmic~log10! intensity distributions of the field in the planey50, generated by a unit scalar point source located in
origin. ~a! Homogeneous part,~b! evanescent part,~c! total field. The results have been calculated forl5633 nm.
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tion of Eq.~2.2!, into the homogeneous and evanescent pa
In order to do this, we first consider the corresponding
composition of the scalar functionG(r ) in source-free half-
spaces.

III. DECOMPOSITION OF THE SCALAR SPHERICAL
WAVE

The scalar spherical wave fieldG(r ), created by a point
source in the origin, satisfies the homogeneous scalar H
holtz equation in the source-free half-spacesz.0 and z
,0. It is convenient to express this wave field in an integ
representation which is composed as a superposition of
s.
-

m-

l
o-

mogeneous plane waves propagating in the various di
tions and of exponentially decaying, nonpropagating, e
nescent plane waves. This angular-spectrum representa
known as the Weyl expansion, can be written as@8#

G~r !5
ik

2p E E
2`

` 1

m
exp@ ik~px1qy1muzu!#dp dq,

~3.1!

where

m5A12p22q2 for p21q2<1, ~3.2!
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m5 iAp21q221 for p21q2.1. ~3.3!

The scalar fieldG(r ) of Eq. ~3.1! can be expressed as a su
of two double integrals

G~r !5GH~r !1GE~r !, ~3.4!

where

GH~r !5
ik

2p E E
p21q2<1

1

m

3exp@ ik~px1qy1muzu!#dp dq, ~3.5!

GE~r !5
ik

2p E E
p21q2.1

1

m

3exp@ ik~px1qy1muzu!#dp dq. ~3.6!

The functionGH(r ) contains all the propagating plane wav
and is therefore called the homogeneous part of the fi
Similarly, the functionGE(r ) contains all the exponentially
decaying plane waves and is called the evanescent part

The functionsGH(r ) and GE(r ) can be expressed in
closed form in two special cases, namely along the chosz
axis and in the planez50. However, it appears that there
no closed-form solution to these functions in an arbitra
direction and the integrals have to be calculated numerica
On making use of the polar coordinates for the integrat
variables and performing simple changes in the radial in
gration variable, the functionsGH(r ) and GE(r ) may be
transformed into a form that is more suitable for numeri
calculations, viz.,

GH~r !5 ikE
0

1

exp@ ia~z!v#J0@b~x,y!A12v2#dv, ~3.7!

GE~r !5kE
0

`

exp@2a~z!v#J0@b~x,y!Av211#dv. ~3.8!

Here J0 is the Bessel function of the first kind and ord
zero, the coordinate-dependent parametersa(z) andb(x,y)
have the form

a~z!5kuzu,
~3.9!

b~x,y!5kAx21y2,

andv is the transformed radial integration variable.
Expressions~3.7! and ~3.8! are cylindrically symmetric

about thez axis and mirror symmetric with respect to thez
50 plane. These characteristics are also evident in Figs.~a!
and 1~b!, in which we have plotted log10uGH(r )u2 and
log10uGE(r )u2 in the planey50. Furthermore, the total field
intensity calculated as the interference of the homogene
and evanescent parts is spherically symmetric as expe
@see Fig. 1~c! illustrating log10uG(r )u2#. Figure 1~b! shows
that the evanescent part~or the envelope of the ridges! de-
cays slower in the direction of thez axis and in the planez
50 than in any other direction. This observation is in acc
dance with the results presented earlier by Shermanet al. @9#
and quite recently by Wolf and Foley@10#.
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It is important to note that when writing the Weyl expre
sion, the whole space is divided into two source-free ha
spaces separated by the planez50. For point sources this
division is quite arbitrary and could be made equally w
using any other plane. Each choice of the dividing plane w
however, lead to different mathematical values for the hom
geneous and evanescent parts in a given point. In all c
the evanescent plane waves will decay exponentially in
direction perpendicular to the dividing plane and they w
propagate in directions parallel to that plane. Since all
different choices must be considered as correct, the phys
meaning of the spherical-wave decomposition into its hom
geneous and evanescent part is somewhat vague. We a
that the decomposition should be understood simply a
mathematical tool which becomes meaningful only when
plied to a real physical situation in which the geometry of t
problem fixes the orientation of the dividing plane.

IV. DECOMPOSITION OF THE VECTOR FIELD

By taking advantage of the results of the preceding s
tion, we decompose the vector field of the point dipole
cated at the origin into its homogeneous and evanes
parts. To accomplish this, we only need to divide the dya
free-space Green function~2.2! into the respective parts
since the corresponding field components are then obta
from Eq. ~2.1!.

On substituting the Weyl expansion~3.1! into Eq. ~2.2!,
we find for the dyadic Green functionGJ (r ) the following
angular-spectrum representation:

GJ ~r !5
ik

2p E E
2`

` 1

m
AJ~p,q!

3exp@ ik~px1qy1muzu!#dp dq, ~4.1!

where the dyadAJ (p,q) takes on the symmetric form

AJ~p,q!5S 12p2

2qp
7mp

2pq
12q2

7mq

7pm
7qm
12m2

D . ~4.2!

In Eq. ~4.2!, and from now on, the upper signs refer to t
regionz>0 and the lower signs to the regionz,0. Note also
the formal similarity of Eq.~4.1! with Eq. ~3.1!; they differ
only by the presence of the dyadAJ (p,q). Performing the
integration over the entirek space, as indicated in Eq.~4.1!,
leads to expression~2.3!.

Formally we could calculate the homogeneous (p21q2

<1) and evanescent (p21q2.1) parts of the dyadic Green
function, denoted byGJ H(r ) andGJ E(r ), respectively, by di-
rect integration of Eq.~4.1!. However, it is more convenien
to determine these functions by substituting into Eq.~2.2! the
forms ~3.7! and~3.8!, which still are in Cartesian coordinate
but in which one integration already has been carried o
Unfortunately, it does not seem possible to perform anal
cally the remaining integral to find closed-form expressio
for the homogeneous and the evanescent parts. These
tions can, however, be expressed in a rather compact f
containing only simple classes of integrals which can read
be computed numerically. By direct calculation we find f
the homogeneous part
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GJ H~r !5 ikS I 0
H1

k2~x22y2!

b3 L1
H2

k2x2

b2 L2
H k2xy

b2 F 2

b
L1

H2L2
HG 7

ikx

b
L3

H

k2xy

b2 F 2

b
L1

H2L2
HG I 0

H1
k2~y22x2!

b3 L1
H2

k2y2

b2 L2
H 7

iky

b
L3

H

7
ikx

b
L3

H 7
iky

b
L3

H L2
H

D , ~4.3!

where

L1
H~r !5

i

a
@J1~b!2bI 1

H#,

L2
H~r !5I 0

H2I 2
H , ~4.4!

L3
H~r !52

1

b
@J0~b!1 iaI 0

H22I 1
H2 iaI 2

H#,

and

I n
H~r !5E

0

1

vneia~z!vJ0@b~x,y!A12v2#dv. ~4.5!

For the evanescent part we find

GJ E~r !5kS I 0
E1

k2~x22y2!

b3 L1
E2

k2x2

b2 L2
E k2xy

b2 F 2

b
L1

E2L2
EG 6

kx

b
L3

E

k2xy

b2 F 2

b
L1

E2L2
EG I 0

E1
k2~y22x2!

b3 L1
E2

k2y2

b2 L2
E 6

ky

b
L3

E

6
kx

b
L3

E 6
ky

b
L3

E L2
E

D , ~4.6!
e
ar

v
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f the
where

L1
E~r !5

1

a
@J1~b!1bI 1

E#,

L2
E~r !5I 0

E1I 2
E , ~4.7!

L3
E~r !5

1

b
@J0~b!2aI 0

E12I 1
E2aI 2

E#,

and

I n
E~r !5E

0

`

vne2a~z!vJ0@b~x,y!Av211#dv. ~4.8!

In these equationsJ0 and J1 are Bessel functions and th
parametersa(z) and b(x,y) are the same as in the scal
case, given by Eq.~3.9!.

The symmetry properties of the homogeneous and e
nescent parts of the dyadic Green function are not as tr
parent as in the scalar case, and a general discussion o
symmetries based on Eqs.~4.3! and ~4.6! necessarily be-
comes rather complicated. Formally the expressions~4.3!
and~4.6! for the homogeneous and evanescent contributi
look very similar, but both mathematically and physica
a-
s-
the

s

they are different. The physical implications are best seen
considering the homogeneous and evanescent parts o
point-dipole field.

The dyadic equations~4.3! and ~4.6! are valid for any
point dipole P at the origin, but for simplicity we takeP
5(0,0,1), i.e., a unit dipole pointing in the positivez direc-

FIG. 2. Illustration of point dipoleP5(0,0,1) located in the
origin and the planes of observation atz5l andy50.
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FIG. 3. Logarithmic~log10! electric energy distributions in the planez5l for point dipoleP5(0,0,1) at origin.~a! Homogeneous part
~b! evanescent part,~c! total field; l5633 nm.
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tion as shown in Fig. 2. The homogeneous and evanes
parts of the ensuing electric field, denoted byEH(r ) and
EE(r ), respectively, are then obtained with the help of E
~2.1!. The results, as would be observed in the planesz5l
andy50 ~see Fig. 2!, are illustrated in Figs. 3 and 4. Mor
specifically, the logarithmic homogeneous and evanes
electric energy density distributions log10uEH(r )u2 and
log10uEE(r )u2 in the planez5l are plotted in Figs. 3~a! and
3~b!, respectively, while Fig. 3~c! shows the logarithmic tota
electric energy density log10uE(r )u2. Analogous results per
taining to the planey50 are illustrated in the three parts o
Fig. 4. We note thatuEH(r )u21uEE(r )u2ÞuE(r )u2 because of
the interference terms. The fieldsEH(r ) andEE(r ) generated
nt

.

nt

by a point dipole are seen to have the same characteristic
the corresponding fields produced by the scalar point sou
~cf. Fig. 1!. The homogeneous and evanescent parts exh
sharp ridges, while the total field is smooth. As in the sca
case, the evanescent waves decay exponentially only in tz
direction and propagate in the plane perpendicular to
These characteristics do not depend on the direction of
source dipole. We stress again, however, that the argum
about the physical meaningfulness of the division stated
connection with the scalar functionG(r ) also apply for this
vector field case.

Let us now consider the form of the evanescent Gre
function in the two special directions of thez axis and the
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FIG. 4. Logarithmic~log10! electric energy distributions in the planey50 for point dipoleP5(0,0,1) at origin.~a! Homogeneous part
~b! evanescent part,~c! total field; l5633 nm.
th

e
ti

t

in a
z50 plane. Settingx5y50 in Eq.~4.1! and integrating over
the evanescent waves only, it is straightforward to show
along thez axis GJ E(r ) can be expressed as

GJ E~z!5S 1

2uzu
2

1

k2uzu3DUJ1S 1

2uzu
1

3

k2uzu3D kk , ~4.9!

wherek is the unit vector in thez direction, i.e., normal to
the planez50 that divides the space into the two source-fr
halves. The corresponding homogeneous Green func
along the z axis can be calculated fromGJ H(z)5GJ (z)
2GJ E(z). Similarly, in the planez50 both the evanescen
at

e
on

and the homogeneous Green function can be expressed
closed form. In this case the integralsI n

E in Eq. ~4.8! reduce
to

I 0
E~z50!5

cosb

b
,

I 1
E~z50!52

J1~b!

b
, ~4.10!

I 2
E~z50!52

sin b

b2 2
cosb

b3 .
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With the help of Eq.~4.10! and l’Hospital’s rule, one obtains
for the correspondingLn

E terms

L1
E~z50!5

sin b

b
1

cosb

b2 ,

L2
E~z50!5

cosb

b
2

sin b

b2 2
cosb

b3 , ~4.11!

L3
E~z50!52

J2~b!

b
.

In the same manner for the homogeneous part, the integ
I n

H in Eq. ~4.5! in the z50 plane can be expressed as

I 0
H~z50!5

sin b

b
,

I 1
H~z50!5

J1~b!

b
, ~4.12!

I 2
H~z50!52

cosb

b2 1
sin b

b3 ,

and theLn
H terms as

L1
H~z50!52

cosb

b
1

sin b

b2 ,

L2
H~z50!5

sin b

b
1

cosb

b2 2
sin b

b3 , ~4.13!

L3
H~z50!5

J2~b!

b
.

By inserting expressions~4.10! and~4.11! into Eq.~4.6!, one
observes that, as in propagation along thez axis, the evanes
cent Green function falls off as 1/r also in thez50 plane.
Furthermore, as a limiting case one obtains
als

GJ H~r50!5 2
3 ikUJ . ~4.14!

This shows that the homogeneous part in the source poi
finite and the singularity in the total field resides in the ev
nescent part.

The result along thez axis, Eq.~4.9!, is precisely the same
~except for units and an overall minus sign! as that put for-
ward in Refs.@6#, but in those works it is claimed that thi
form should hold in all directions. This cannot possibly
correct. Apart from thez axis and thez50 plane, the leading
term of the evanescent part of the spherical wave is (kr)23/2

@9#. One can analytically apply the differential operator
Eq. ~2.2! on this asymptotic form and see that the result do
not contain terms behaving as 1/kr. This shows that excep
for the two special directions, the dyadic evanescent Gr
function falls faster than 1/kr.

V. CONCLUSIONS

In this work we used the known results from scalar-wa
propagation and decomposed in appropriate half-spaces
dyadic free-space Green function into its homogeneous
evanescent parts. We found that properties similar to th
for scalar fields are also associated with vector fields,
that irrespective of the dipole orientation, the dyadic evan
cent waves decay exponentially in thez direction and propa-
gate parallel to it. This result originates from the fact that t
dyadic free-space Green function is generated by the co
sponding scalar Green function.

Contrary to what has been proposed in the literature
fore, the dyadic Green-function decomposition depends
the choice of the half-spaces, in a fixed reference frame,
leads to different expressions for different choices. In a
practical situation the proper half-space is determined by
physical conditions.
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